

RESOURCES FOR "HSC-II PHYSICS" ZUEB EXAMINATIONS 2021

@copyright ZUEB

PREFACE:

The ZUEB examination board acknowledges the serious problems encountered by the schools and colleges in smooth execution of the teaching and learning processes due to sudden and prolonged school closures during the covid-19 spread. The board also recognizes the health, psychological and financial issues encountered by students due to the spread of covid-19.

Considering all these problems and issues the ZUEB Board has developed these resources based on the condensed syllabus 2021 to facilitate students in learning the content through quality resource materials.

The schools and students could download these materials from <u>www.zueb.pk</u> to prepare their students for the high quality and standardized ZUEB examinations 2021.

The materials consist of examination syllabus with specific students learning outcomes per topic, Multiple Choice Questions (MCQs) to assess different thinking levels, Constructed Response Questions (CRQs) with possible answers, Extended Response Questions (ERQs) with possible answers and learning materials.

ACADEMIC UNIT ZUEB:

1: Multiple Choice Questions:

The Multiple-Choice Questions with a stem, correct answer and 3 distractors or plausible wrong answers format is designed to assess the content and thinking of students from; R (Remembering); U(Understanding) and A (Applying, Analyzing, Evaluating, Creating). The questions are also classified into three difficulty levels accordingly; D(DIFFICULT), M (MODERATE), E (EASY)

HOW TO ATTEMPT AN MCQ:

MCQ:

- EACH MCQ HAS FOUR OPTIONS, A, B, C AND D. SELECT ONE OPTION AS THE BEST ANSWER AND FILL IN THE CIRCLE OF THAT OPTION, FOLLOWING THE INSTRUCTIONS GIVEN BY THE INVIGILATOR.
- USE BLACK PEN/PENCIL TO FILL IN THE CIRCLE.

Correct Way	Wrong Ways		
1	1	2	3
a	a	a	a
Ъ	b	b	b
C	\otimes	C	\oslash
d	d	d	d

S#	MCQ'S MATERIAL (CHAPTER -11)	KEY
1	If the volume of a given mass of a gas is doubled without	a) <u>Reduced</u>
	changing its temperature, the pressure of the gas is:	<u>to ½ of the</u>
	a) <u>Reduced to ¹/2 of the initial value</u>	<u>initial value</u>
	b)The same as the initial value	
	c) Reduced to $\frac{1}{4}$ of the initial value	
	d) Double of the initial value	
2	Boyle's law is an example of:	<u>b)</u>
	a)Latent heat process	Isothermal
	b) <u>Isothermal process</u>	<u>process</u>
	c) Adiabatic process	
	d) Mechanical process	

3	The volume of a given gas at constant pressure becomes zero at:	<u>d) -273°C</u>
	a) 273K	
	b) $2/3^{\circ}$ C	
	C) -2/3K	
	u) <u>-275 C</u>	
4	Absolute Zero is considered as that temperature at which:	b) All
	a) All liquids become gasses	gases
	b) <u>All gases become liquids</u>	become
	c) Water freezes	liquids
	d) None of them	
		ь) V / Т _
5	According to Charles' Law:	$\frac{\mathbf{D}}{\mathbf{V}} = \frac{\mathbf{V}}{\mathbf{V}}$
	a) $PV = Constant$	Constant
	b) $V/T = Constant$	
	c) VT = Constant	
	dP/V = Constant	
	Real gas molecules do not strictly obey gas law at:	
6	a) <u>High pressure and low temperature</u>	a) <u>filgii</u> pressure
	b)Loss pressure and high temperature	and low
	c) Low pressure and high temperature	<u>temperatur</u>
	d) None of the above	<u>c</u>
7	The graph of pressure and volume of certain mass of a gas at	b)
	constant temperature is a:	<u>Hyperbola</u>
	a)Parabola	
	b) <u>Hyperbola</u>	
	c) Straight line	
	d) None of these	
8	The S.I. unit of heat is:	a) <u>Jouie</u>
	a) <u>Joule</u>	
	b)Calorie	
	c) Centigrade	
	d)Fahrenheit	
9	The average internal energy of an ideal gas is called:	c)
	a)Pressure b) Volume	<u>Temperatu</u>
	c) <u>Temperature</u> d) Heat	<u>re</u>

10	The sum of the total energy of m	otion of all the particles	c)
	measures the	F man	Quantity of
	a) Temperature		<u>heat</u>
	b) Specific heat		
	c) Quantity of heat		
	d)None of these		
	, ,		
11	Heat energy cannot be measured	in:	b) <u>Kelvin</u>
	a)Joule		
	b) Kelvin		
	c) BTU		
	d) Calories		
12	Heat is produced by:		d) All of
14	a) By rubbing		these
	b) By friction		<u>inese</u>
	c) By Mechanical		
	d) All of these		
	(), <u> 02 02 02 0</u>		
12	Something which flows from a h	ot body to a cold body is known	b) Heat
15	as:	5	·
	a) Specific heat		
	b) <u>Heat</u>		
	c) Internal energy		
	d) Temperature		
14	A bimetallic thermostat works or	the principle of :	c)
14	a) Linear expansion		Differential
	b) Bulk expansion		<u>liner</u> expansion
	c) <u>Differential liner expansion</u>		<u>expansion</u>
	d) All of these		
	The two shipst are in the must are		b)
15	same:	infortum when they have the	Temperatu
	a)Kinetic energy		re
	b) Temperature		
	c) Thermal energy		
	d) Potential energy		
16	A bimetallic strip can be used to	make a:	a)
	a) <u>Thermometer</u>	b) Barometer	Thermomet

	T			
17	A device which maintains the temperature is:	b)		
<i>a</i> "	a) Thermometer Dr. (Crr.) DEED. (A)	<u>Thermostat</u>		DI
S#	MCQ'SMATERIAL (CHAPTER -12)	KEY	CL	DL
21	When a glass rod is rubbed with silk the glass rod is positively	c) <u>Electrons</u>		
	c) Calorfe meter	are		
	charge because:	transferred		
	a) Electrons are transferred from silk to glass	from glass		
18	Binettone state worker a the paintilip to glassifferent materials	t <u>9 filkferent</u>		
	ba Electrons are transferred from glass to silk	<u>coefficient</u>		
	d) No traquédroué éfecterono foliperatoux pansiden place	<u>of linear</u>		
	b) Equal coefficient of volume expansion	<u>expansion</u>		
22	The uniDifferent; coefficient of linear expansion	b) <u>Coulomb</u>		
	a) Electrone of these			
	b) Coulomb			
10	Thermostat is a device used to keep the:	a)		
19	c) Newton /sq. meter	a)		
	a) <u>remperature constant</u>	Temperatu		
23	b) Entropy constant	<u>re constant</u>		
23	c) Heat constant	19 C		
	(a) $\frac{16 \times 10^{-12} \text{ C}}{110^{-12} \text{ C}}$ (b) $1 \times 10^{-12} \text{ C}$			
	c) 1×10^{-6} C d) One Coulomb			
		c) K ⁻¹		
	I ne unit of co-efficient of thermal expansion is:	a) Newtor?		
20	a)outorite by a law for the force between electric charges most	C) <u>Inewton's</u>		
	b) m / K	Law of		
	× ••• •			
	$ c \rangle \underline{K}^{-}$			
	d) K			

24	closed resembles.	gravitation
	a) The law of conservation of energy	
	b) Newton's second law of motion	
	c) Newton's Law of gravitation	
	d) the law of conservation of mass	
	Two charges q_1 and q_2 are repel each other if	(c)
25	a) $q_1 q_2 = 0$	$\frac{\mathbf{q}_1 \mathbf{q}_2 \times \mathbf{o}}{2}$
	b) $a_1 a_2 < 0$	
	$\begin{array}{c} c \\ c \\ c \\ \end{array} = \begin{array}{c} a \\ c \\ c \\ \end{array} = \begin{array}{c} a \\ c \\$	
	$\frac{c}{d_1 d_2 > c}$	
	d) None	
26	If an algotrostatic force between two electron at a distance is """	
	Newton, the electrostatic force between two protons at the same	() <u>r</u>
	distance is	
	a) Zero	
	b) F/2	
	\mathbf{c}) \mathbf{F}	
	d) 2F	
27	If the distance between two pint charges is halved then the	b) <u>Four</u>
	electrostatic force between them become	<u>times</u>
	a) Halved	
	b) Four times	
	c) Twice	
	d) Remain same	
28	Two positive point charges repel with a force of $4 \ge 10^{-4}$ N when	a) <u>1 x 10⁻⁴ N</u>
	placed at distance of 1m:. If the distance between them is	
	increased by 2m, the force of repulsion will be :	
	a) <u>1 x 10⁻⁴ N</u>	
	b) 8 x 10 ⁻⁴ N	
	c) $2 \times 10^{-4} N$	
	d) $4 \times 10^{-4} N$	
29	Two unequal point charges repel each other with a force of	c)
	100M Dyne when they are 15 inch apart. Find the force which	900MDyne
1		

	each exertion the oth	er when they are 5 inch apart	
	a) 100MDyne	b) 400MDyne	
	c) <u>900MDyne</u>	d) 1000MDyne	
30 31	Number of electron c a) 6.25×10^{18} electron b) 2×10^{-19} electrons c) 2×10^{19} electrons d) 9×10^{18} electrons The concept of the el famous scientist calle a) Newton	ectric lines of force was introduced by a	a) <u>6.25×10¹⁸el</u> <u>ectrons</u> d) <u>Faraday</u>
	b) Einstein		
	c) Coulomb		
	d) <u>Faraday</u>		
			d)
32	The direction of the e	electric field intensity is:	Dependent
	a) Away from all nega	ative charges	on the
	b) Toward all negative	ve charges	nature of a
	c) The same as the di	rection of an electric force	<u>charge</u>
	d) Dependent on the	e nature of a charge placed at the point in	placed at
	<u>question</u>		the point
			<u>in question</u>
33	Which of the following a) N/ Coulomb b) Volt/ meter c) Joule/ Coul-metre d) <u>Joule/Coulomb</u>	ng cannot be the unit of electric intensity:	d) <u>Joule/Coul</u> omb
34	Which of the following a) Potential c) Electric flux	ng is not a scalar quantity? b) Electromotive force d) <u>Electric intensity</u>	d) <u>Electric</u> intensity
	Two point charges ea	ich of 10 μ c are placed 10cm apart in air,	c) <u>Zero</u>

10	a) <u>Electric flux</u>	
) is called :	a) <u>Electric</u> flux
	The scalar product of electric intensity (F) and vector areas (AA)	
	d) <u>Electric intensity</u>	
	c) Electric Potential	
	b) Electric flux	
9	a) Electromotive force	intensity
	This is not a scalar quantity:	d) <u>Electric</u>
	u) <u>Electric intensity</u>	
	d) Electric intensity	
	b) Electric flux	
8	a) Gauss's law	
	The quantity - $\Delta V / \Delta r$ represents:	d) <u>Electric</u>
	d) the nature of charge	
	c) the magnitude of the charge	
	b) the nature of medium	<u>charge</u>
	a) the distance from charged particle	nature of
7	The magnitude of the electric field intensive does not depend	d) <u>the</u>
	The magnitude of the electric field intersive descent der 1	
	d) Electric current	
	c) Electric potential	
	b) <u>Electric field intensity</u>	
6	a) Electric flux	intensity
	The force per unit charge is known as:	b) <u>Electric</u> field
	d) None	
	c) <u>Zero</u>	
	b) 1	
	a) $9 \times 10^{9} N$	
	0	

	b) Electric force	
	c) electric potential	
	d) electric flux density	
	The electric flux through a surface will be minimum, when the	a) <u>90°</u>
	angel between E and ΔA is:	
41	a) <u>90°</u>	
	b) Zero	
	c) 45°	
	d) 60°	
	The flux through a surface is maximum when the angle between	a) <u>0</u> °
	E and ΔA is:	
42	a) 0 °	
	b) 90°	
	c) 180°	
	d) 45°	
	Electric flux through the surface of a sphere which contains a	c) The
	charge at its center depends :	amount of
43	a) The radius of the sphere	<u>charge</u> inside the
	b) The surface area of the sphere	sphere
	c) The amount of charge inside the sphere	
	d) The amount of charge outside the	
		a)
	The electric flux through a closed surface depends on the:	Magnitude
44	a) <u>Integnitude of the charge enclosed by the surface</u>	of the
	b) Position of the charge enclosed by the surface	<u>charge</u>
	d) None of the above option	enclosed
	a) none of the above option	by the
		<u>surface</u>
	The flux through a closed surface which does not contain any	c) Zero
		/
	charge is:	

	b) Positive	
	c) Zero	
	d) Unity	
	If a closed surface contains two equal and opposite charges, th	d) Zero
	net electric flux form the surface will be:	() <u></u>
46	a) 2 <i>σ</i>	
	b) $1/2\sigma$	
	c) $2q/\sigma$	
	d) Zero	
	Coulomb per square meter is a unit of:	c) <u>Surface</u>
47	a) Permittivity constant of a medium	density of charge
	b) Dipole moment	
	c) <u>Surface density of charge</u>	
	d) Linear density of charge	
	The magnitude of Electric Intensity between two oppositely	d) $\frac{\sigma}{\sigma}$
	charged plates is:	ε_o
48	a) $\frac{2\sigma}{2\sigma}$	
	έ	
	b) $\frac{\sigma}{2\epsilon_{o}}$	
	c) $\frac{\sigma}{3c}$	
	d) $\frac{\sigma}{\varepsilon_a}$	
	The electric field intensity between two similarly charged plat	e c) <u>Zero</u>
	is:	
1 9	a) σ/ϵ_{o} b) $\sigma/2\epsilon_{o}$	
	c) Zero d) $2\sigma/\epsilon_o$	
	Electric intensity at a point inside a charged hollow sphere is:	a) <mark>Zero</mark>
	a) Zero	
	b) Infinite c) Positive	

50	d) Negative	
	One joule per coulomb is called:	d) Volt
	a) Farad	
	b) Gauss	
	c) Ampere	
	d) Volt	
		a) Detential
	The quantity $\Delta V / \Delta S$ is called:	c) <u>Potential</u> gradient
	a) Electric Potential	gradient
	b) Electric field intensity	
	c) Potential gradient	
51	d) Electric induction	
	The shares in potential anarray of a unit shares between two	
	ne change in potential energy of a unit charge between two	c) <u>Potential</u>
	a) Intensity	difference
	a) Intensity b) Permittivity	
52	c) Potential difference	
	d) Flux	
	The relation between electric field intensity 'E' and electric	b) $\mathbf{V} = \mathbf{E} \mathbf{r}$
	potential 'V' is:	
50	a) $\mathbf{E} = \mathbf{V} \mathbf{r}$	
53	b) $\underline{\mathbf{V}} = \underline{\mathbf{E}} \ \underline{\mathbf{r}}$	
	c) $\mathbf{r} = \mathbf{E} \mathbf{V}$	
	d) E V = $1/r$	
	The earth surface is assumed to be at:	h) Zara
	a) Infinite potential	b) <u>Zero</u> potential
	b) Zero potential	
	c) Negative potential	
54	d) None	
	On equipotential surface, work done in moving a charged	c) Zero
	particle is:	
	a) Positive	
55	b) Negative	
	c) <u>Zero</u> d) Infinity	
		c) Capacitanc
	For a capacitor, the charge per unit volt is called:	e
	a) Potential	-
56	b) Electric flux	

d) Current d) Na The capacitance of parallel plate capacitor doesn't depend upon: a) Area of plates b) Distance b/w the plates b) Distance b/w the plates c) Medium b/w the plates d) Nature of metals used as plates d) Nature of metals used as plates d) is	ature etals as es
 57 The capacitance of parallel plate capacitor doesn't depend upon: a) Area of plates b) Distance b/w the plates c) Medium b/w the plates d) Nature of metals used as plates d) is 	<u>ature</u> <u>etals</u> <u>as</u> es
 57 The capacitance of parallel plate capacitor doesn't depend upon: a) Area of plates b) Distance b/w the plates c) Medium b/w the plates d) Nature of metals used as plates d) is 	<u>etals</u> <u>as</u> es
 a) Area of plates b) Distance b/w the plates c) Medium b/w the plates d) Nature of metals used as plates d) is 	<u>as</u> es
 b) Distance b/w the plates c) Medium b/w the plates d) Nature of metals used as plates d) is 	es
 c) Medium b/w the plates d) <u>Nature of metals used as plates</u> d) is 	
d) <u>Nature of metals used as plates</u> d) is	
d) is	
If the area of the plates of a parallel plates capacitor is doubled, doub	<u>ole</u>
the capacitance:	
58 a) is half	
b) remains unchanged	
c) is increased four times	
d) <u>is double</u>	
b) ½	С
The separation between the plates of a parallel palate capacitor	<u> </u>
whose original capacitance was C is doubled, the capacitance is	
59 now:	
a) ¼ C	
b) <u>1/2 C</u>	
c) 2 C	
d) 4 C	
a) <u>In</u>	<u>creases</u>
With the introduction of a dielectric between the plates of a	
capacitor, its capacitance:	
a) <u>Increases</u>	
b) Decreases	
c) Remains the same	
d) Becomes zero	
b) <u>T</u> e	<u>0</u>
The introduction of a dielectric between the oppositely charged	ease
61 plates causes the intensity:	
a) To increase	
b) <u>To decrease</u>	
c) To remain constant b) T	he
d) To increase and decrease inte	nsity
Slab of certain dielectric is placed between two oppositely of e	lectric
charge metal plates. Choose the correct answer from the filed	1
	veen
62 ^{following?} betw	

	b) The intensity of electric filed between the plates	decreases.
	decreases.	
	c) The intensity of electric filed between the plates does not	
	change.	b) <u>Increases</u>
	If a dielectric slab is introduced between the plates of a parallel	
	plate capacitor, kept at a constant potentials, the charge on the	
	capacitor:	
53	a) Decreases	
	b) <u>Increases</u>	
	c) Remains unchanged	
	d) Becomes zero	a) <u>1.0</u>
	Dielectric constant for air is:	
	a) <u>1.0</u>	
54	b) 1.05	
, - t	c) 0.8	
	d) Infinite	
	A dielectric $k = 2$ is inserted between the plates of a 20μ F	d) <u>40µ F</u>
	capacitor. Its capacitance will become:	
	a) 10µ F	
5	b) 18µ F	
	c) 22µ F	
	d) <u>40μ F</u>	
	If two capacitors of 5μ F and 7μ F are connected in parallel, their	b) <u>12 μF</u>
	equivalent capacitance will be:	
	a) 0.12 µF	
6	b) 12 µF	
	c) 0.34 uF	
	d) 2 9 µF	
	α) 2.9 μι	
	When two identical capacitor are connected in parallel the net	a) Doubled
	capacitance will be	
	a) Doubled	
	b) Unchanged	
57	c) Halved	

	d) Zero	D) 1 22 - F
		$D) 1.33 \mu F}$
	If 4 μ F and 2 μ F capacitors are connected in series, the	
	equivalent capacitance is:	
	a) 0.76 µ F	
	b) 6 µ F	
68	c) 2 µ F	
	d) <u>1.33 μF</u>	
	Two capacitors of 3 u F and 6 u F are connected in series. Their equivalent capacitance is: a) 19μ F b) 2μ F c) $1/2\mu$ F	b) <u>2 µF</u>
69	d) 3µF	a) Less
		a) <u>1235</u>
	When three capacitors are joined in series, the total capacitance is:	than the
	a) Less than the value of minimum capacitance	value of
	b) Equal to the sum of the capacitances	<u>minimum</u>
70	c) Greater than the value of maximum capacitance	<u>capacitanc</u>
		<u>e</u>
	Which of the following is a representation of electrostatic potential energy of a capacitor? a) $\frac{1/2 \mathbb{C} \mathbb{V}^2}{1/2 \mathbb{C}^2 \mathbb{V}}$	a) <u>¹/₂ C V ²</u>
71	c) C V	
/1	d) $\frac{1}{2}$ (CV) ²	
	 A dielectric, having ∈_r = 2 is inserted between the plates of a 20 micro F capacitor, its capacitance will be: a) Remains same b) be halved c) becomes zero 	d) <u>be</u> <u>doubled</u>
72	d) be doubled	
72	d) <u>be doubled</u> If separation between the plates and the area of the plates of a	b) <u>Remain</u>
72	d) <u>be doubled</u> If separation between the plates and the area of the plates of a parallel plates capacitor are doubled, then the capacity will:	b) <u>Remain</u> <u>the same</u>
72	 d) <u>be doubled</u> If separation between the plates and the area of the plates of a parallel plates capacitor are doubled, then the capacity will: a) Become fourfold 	b) <u>Remain</u> <u>the same</u>
72	 d) <u>be doubled</u> If separation between the plates and the area of the plates of a parallel plates capacitor are doubled, then the capacity will: a) Become fourfold b) Remain the same 	b) <u>Remain</u> <u>the same</u>

	d) Becomes ¹ / ₄		
73			

S#	MCQ'S MATERIAL (CHAPTER -13)	KEY	CL	DL
74	The rate of transfer of charges through a circuit is called.	b) <u>Current</u>		
	a) Resistance			
	b) <u>Current</u>			
	c) Potential difference			
	d) all of these			
75	Electrical conductor contains.	d) <u>All of</u>		
	a) Only free electrons	these.		
	b) Only bound electrons			
	c) Resistance			
	d) <u>All of these</u> .			
76	Charge carrier in Metallic conductors are the electron of:	a) <u>Valence</u>		
10	a) <u>Valence Shells</u>	<u>Shells</u>		
	b) All shells			
	c) Excited States			
	d) Inner shells			
77	The current which flows from high potential to low potential is	d)		
//	called:	Convention		
	a) Pulsating current	al current		
	b) Direct current			
	c) Alternating current			
	d) <u>Conventional current</u>			
78	Free electrons in an electric field:	c) <u>Move</u>		
10	a) Move from higher potential to lower potential	from lower		
	b) Remain stationary	<u>potential to</u> higher		
	c) Move from lower potential to higher potential	potential		
	d) Rotate in a circle			
79	A wire of length L and resistance R is cut into four equal pieces.			
	Resistance of each piece would be:	d) <u>R / 4</u>		

	a) R	
	b) R / 2	
	c) 2 R	
	d) <u>R / 4</u>	
	If a wire of a uniform area of cross section is cut into two equal	
80	parts, the resistivity of each part would be:	(c) Same
	(a) Doubled	
	(b) Halved	
	(c) <u>Same</u>	
	(d) None of these	
	A copper wire having resistivity ρ is stretched in such a way that	
81	its diameter reduces to half of that of the original wire. The new	c) <u>the same</u>
	resistivity will be:	
	a) halved	
	b) doubled	
	c) <u>the same</u>	
	d) four-fold	
	A wire of a uniform cross-section area is cut into three equal	
	segments. The resistivity 'o' of each segment will be	
82	segments. The resistivity β of each segment will be.	b) <u>Same as</u>
	a) $1/5p$	that of the
	b) Same as that of the whole wire	whole wire
	$c = 27.5 \rho$	
	d) Three times as that of the whole wire	
	Resistance of a wire does not depend on the:	
83	a) Area	d) <u>Electric</u>
	b) Temperature	<u>current</u>
	c) Length	
	d) <u>Electric current</u>	
Q/I	The source which maintains the steady current in electrical	
04	circuits is called:	(b) <u>E.M.F</u>
	(a) Electric motor	
	$(b) \underline{\mathbf{E}}.\mathbf{M}.\mathbf{F}$	
	(c) Generator (d) Thermocouple	
	The e m f of a source in the presence of internal resistance is:	
	(a) I R	
85		

r			
	(b) I r	<u>r</u>	
	(c) $\underline{\mathbf{IR} + \mathbf{Ir}}$		
	(d) I R - I r		
	E.M.F. of a source in the absence of internal resistance is:		
86	(a) <u>I R</u>	(a) <u>I R</u>	
	(b) $\overline{IR} + Ir$		
	(c) Ir		
	$(d) \mathbf{IR} - \mathbf{Ir}$		
	Loss of Voltage in Electrical circuits is given by		
	(a) I D		
86	$(a) I \mathbf{K}$	(b) I r	
	$(0) \underline{\mathbf{I}}$		
	(c) IR + Ir		
	(d) I R - I r		
	The terminal potential difference of a battery is equal to its e.m.f		
88	when its internal resistance is:	(a) Zero	
00	(a) <u>Zero</u>	(u) <u>2010</u>	
	(b) Very high		
	(c) Very low		
	(d) None of these		
	A battery of e.m.f (E) has an internal resistance (r). If a current (I) is		
	drawn from it, then its terminal potential drop (v) is given by	$\begin{array}{c} (a) \underline{\mathbf{v}} = \underline{\mathbf{E}} - \\ \mathbf{I} \mathbf{r} \end{array}$	
89	(a) $\mathbf{V} = \mathbf{E} - \mathbf{I}\mathbf{r}$	<u></u>	
	$\begin{pmatrix} w \\ v \\ w \end{pmatrix} = \frac{1}{2} \frac{1}$		
	$\begin{pmatrix} 0 \end{pmatrix} V = \mathbf{L} + \mathbf{H} \\ (0) \mathbf{V} = \mathbf{I} \mathbf{P}$		
	$(\mathbf{u}) \mathbf{v} = \mathbf{E} \mathbf{r}$		

S #	MCQ'S MATERIAL	(CHAPTER -14)	KEY	CL	DL
90	Non-inductive coil in a res a) Eddy current b) Heat loss c) Mutual inductance d) self inductance	istance box is used to minimize:	d) <u>self</u> <u>inductance</u>		
91	The path of neutron movin (a) <u>A straight path</u> (c) An oval path When a charged particle en perpendicularly, its path is	g normal to the magnetic field is: (b) A circular path (d) A sinusoidal path nters a uniform magnetic field	(a) <u>A</u> <u>straight</u> <u>path</u> (b) <u>Circular</u>		

	(a) Spiral	
	(b) <u>Circular</u>	
	(c) Parabolic	
	(d) Straight line	
92	If an electron and a proton enter into a magnetic field	(d) <u>Both</u>
	perpendicularly with the same momentum	<u>particles</u>
	(a) The electron will be deflected more	will be
	(b) The proton will be deflected more.	<u>deflected</u>
	(c) They will not be deflected at all.	equally
	(d) Both particles will be deflected equally	
02	Which of the two charged particles of same masses will deflect	
95	more in the same magnetic field.	(a) <u>Slow</u> moving
	(a) Slow moving	
	(b) Fast moving	
	(c) Both	
	(d) None of these	
94	A steady current passing through a conductor produces	(b) Magnetia
	(a) Electric filed only	field only
	(b) Magnetic field only	
	(c) Both electric and magnetic	
	(d) None of these	
95	Upon which of the following magnetic field inside the solenoid	(b)
	does not depend.	Diameter of
	(a) Permeability b) Current	solenoid
	(c)Turns per length	
	(d) <u>Diameter of solenoid</u>	
96	Net electric filed in a current carrying conductor is:	(b) <u>Zero</u>
	(a) The difference of electric fields of protons and electron.	
	(b) <u>Zero</u>	
	(c) The sum of electric fields of protons and electrons	
	(d) Negative	
97	The magnetic field of induction within the core of toroid for the	(d) Directly
	given value of current	proportion

	() D' $(1 + i)$ $(1 + i)$ (i)	
	(a) Directly proportional to the square of the radius of turns.	al to the
	(b) Directly proportional to the radius of turns.	<u>number of</u>
	(c) Inversely proportional to the number of turns	<u>turns</u> .
	(d) <u>Directly proportional to the number of turns</u> .	
98	 Two free parallel wires carrying current in the opposite direction: a) Do not affect each other b) Attract each other c) <u>Repel each other</u> 	c) <u>Repel</u> <u>each other</u>
	d) None of these	
99	The path of neutron, moving perpendicularly through a uniform magnetic field is: a) <u>a straight line</u> b) circular c) oval	a) <u>a</u> <u>straight</u> <u>line</u>
	d) sinusoidal	
100	 When the north pole of a bar magnet approaches the face of a closed coil the face becomes; (a) South pole (b) North and then south pole (c)<u>North pole</u> (d) No effect is observed. 	(c) <u>North</u> <u>pole</u>
101	The direction of induced current is given by: (a) Ampere's Law (b) Faraday's Law (c) <u>Lenz's Law</u> (d) Snell's Law	(c) <u>Lenz's</u> <u>Law</u>
103	 The maximum resistance in an A.C. circuit is offered by: (a) Capacitor (b) Solenoid (c) <u>Electromagnet</u> (d) Electric bulb 	(c) <u>Electromag</u> <u>net</u>
104	The Current produced by moving the loop of wire across the magnetic field is called:	(d) <u>Induced</u> <u>current</u>

	(a) Direct current		
	(b) Steady current		
	(c) Pulsating current		
	(d) Induced current		
			(d) <u>Self</u>
105	Non-Inductive wiring is used	to minimize:	Inductance
105	(a) Conductance		
	(b) Resistance		
	(c) Mutual Inductance		
	(d) Self Inductance		
			(a) <u>Weber /</u>
	Henry is equivalent to:		<u>Ampere</u>
106	(a) Weber / Ampere		
	(b) Weber $/ m^2$		
	(c) Weber/ ampere meter		
	d) Weber x meter		
			(b) <u>Henry</u>
	S.I. Unit of induction is		
107	(a) Tesla		
	(b) <u>Henry</u>		
	(c) Watt		
	(d) Weber		
	Weber per ampere is known	as:	(d) <u>A & B</u>
108	(a) Mutual inductance		are correct
	(b) Self-inductance		
	(c) Induced e.m.f.		
	(d) <u>A & B are correct</u>		
			(b) <u>Self</u> Induction
109	The phenomenon of producing	ng emf in the coil itself due to	muttin
	varying current is called:		
	a) Mutual Induction	(b) <u>Self Induction</u>	
	(c) Motional e.m.f.	(d)Electromagnetic induction	
			(a) <u>Law of</u>
110	Which of the following law i	s satisfied by the Lenz's law:	<u>conservatio</u>
110	(a) Law of conservation of e	energy	<u>If of energy</u>
	(b) Law of conservation of cl	narge	
	(c) Faraday Law of induction		(c) Induced
	(d) None of these		(c) <u>inuuceu</u>
	The current which flows in th	ne coil to oppose the dragging force	
111	on the coil is called:		

	(a) Direct current		
	(b) Pulsating current		
	(c) <u>Induced current</u>		
	(d) Steady current.		
			(d) <u>emf will</u>
	When the coil is moved towards the magne	tic poles then:	the coil
112	(a) Light will appear		
	(b) Heat will produce		
	(c) No effect.		
	(d) emf will induce in the coil.		
			(d) <u>Both A</u>
	Cause of self-inductance is:		and B are
113	(a) Change in current in the same coil		correct.
	(b) Change in flux in the same coil.		
	(c) Both A and B are wrong		
	(d) Both A and B are correct.		
			a) Doubled
114	If the number of turns in a coil in doubled, its self-inductance will		
114	be:		
	a) Doubled		
	b) Halved		
	c) The same		
	d) Four-told		
	A transformer is used to change:		c) <u>voitage</u>
115	a) Canacitance		
	b) Frequency		
	c) <u>Voltage</u>		
	d) Power		
			b) <u>AC alone</u>
	Transformers are used in circuits containing		
116	a) DC alone		
	b) <u>AC alone</u>		
	c) both AC, and DC d) non-inductive winding		
	a) non-mouch ve winding		(c) Mutual
	Transformer works on		Induction
117	(a) Ohm's Law	(b) Self induction	
11/	(c) <u>Mutual Induction</u>	(d) Gauss's Law	b) EMF is
			induced in
	In a conventional transformer:		the
118	a) The current moves from primary to the s	econdary windings	secondary

	without any change	by the
	b) EMF is induced in the secondary by the changing magnetic	<u>changing</u>
	<u>flux.</u>	<u>magnetic</u>
	c) The heat is transferred from primary to secondary	<u>flux.</u>
	d) None of the above	
		(b) <u>Iron is a</u>
		good
	The core of a transformer is made of soft iron because:	magnetic
0	(a) Iron is cheaper than copper	substance
.,	(b) Iron is a good magnetic substance	
	(c) Iron is a good conductor of current	
	(d) Iron has high melting point.	(c) <u>Magnetic</u>
	The core of transformer is used to link the primary coil to the	
0	secondary coil. What type of link is this?	
	(a) Thermal,	
	(b) Electrostatic	
	(c) <u>Magnetic</u>	
	(d) Mechanical.	b <u>)</u> Transform
	The practical application of the phenomenon of mutual	er
1	inductance is:	
	a) A.C. generator	
	b) Transformer	
	c) Rectifier	
	d) Dynamo	(b) $\underline{N}_{s} < \underline{N}_{p}$
		<u> </u>
	In step down transformer:	
~	(a) $N_{e} > N_{p}$	
2	(b) $\mathbf{N} \leq \mathbf{N}_{\mathbf{n}}$	
	$(c)N_{c} = N_{c}$	(b <u>) Is< I</u> p
	$(\mathbf{d}) \mathbf{N}_{s} = \mathbf{N}_{p}$	
	In step up transformer:	
2	(a) $I_{c} > I_{r}$	
3	(b) I < I	
	$(c)I_c = I_c$	
	(d) All of these	
J		1

S#	MCQ'S MATERIAL (CHAPTER -15)	KEY	CL	DL
	A moving coil galvanometer is converted into an ammeter by	(d) <u>Low</u>		
123	connecting to it:	<u>resistance</u>		
	(a) Low resistance in series	<u>in parallel</u>		
	(b) High resistances in series			
	(c) High resistance in parallel			
	(d) Low resistance in parallel			
		(d) <u>All of</u>		
	The sensitivity of a galvanometer can be increased by increasing:	them:		
124	(a) Magnetic field			
	(b) Area of coil			
	(c) Number of turns			
	(d) All of them:			
125	I = C / B N A A to increase the sensitivity of a galvanometer, we	(d) C		
120	T = C / D IV A 0 to increase the sensitivity of a garvanometer, we must decrease the value of:	(u) <u>c</u>		
	(a) O			
	(a) 0			
	(b) N			
	(c) B			
	(d) <u>C</u>			

S#	MCQ'S MATERIAL (CHAPTER -19)	KEY	CL	DL
147	Laser produces a) An electron beam b) A neutron beam c) <u>A coherent beam of light</u> d) none of these	c) <u>A</u> <u>coherent</u> <u>beam of</u> <u>light</u>		
148	 (a) CaCO₃ with impurity of Cl ions (b) NaCl with impurity of Ca ions (c) <u>Al₂O₃ with impurity of Cr ions</u> (d) None of the above 	(c) <u>Al₂O₃</u> <u>with</u> <u>impurity of</u> <u>Cr ions</u>		
149	 The process of collecting excited electrons from unstable state into stable state is called: (a) Induced absorption (b) Emitted absorption (c) Population Inversion 	(c) <u>Populatio</u> <u>n</u> <u>Inversion</u>		
150	 (d) De excitation The most stable state of ruby is: (a) <u>Meta State</u> (b) Ground state 	(a) <u>Meta</u> <u>State</u>		

	(c) Excited state	
	(d) Higher state	
		o
151	An atom can usually remains in an ordinary excited state for:	(b) <u>10</u> °
	(a) 10^8 second	secona
	(b) 10^{-8} second	
	(c) 10^3 second	
	(d) 10^{-3} second	
		(b) 10 ⁻³
152	Usually the life of an electron in metastable is of the order of	second
	(a) 10^8 second (b) 10^{-3} second	
	(c) 10^3 second (d) 10^{-8} second	
	The life time of an electron in the metastable state:	(a) <u>Is more</u>
	(a) Is more than any ordinary excited stable	than any ordinary
153	(b) Less than any ordinary excited state	excited
	(c) Equal to any ordinary excited state	stable
	(d) Half-life of the element used	
	In radioactive decay law, N = N _o e ^{-λ t} , λ represents:	(c) <u>Decay</u>
1 7 4	(a) Wave length	<u>constant</u>
154	(b) Half-life	
	(c) <u>Decay constant</u>	
	d) Mass Radioactive Sample	
		(c)
155	Decay process in radioactive nuclei takes place:	Exponentia
133	(a)Conditionally	
	(b) Linearly	
	(c) <u>Exponentially</u>	
	(d) Smoothly.	(b)
		Decreases
156	The rate of decay of a radioactive substance:	exponenti
150	(a) Increases with increasing time	
	(b) Decreases exponentially with the increasing time	
	(a) remains constant with increasing time	the
	(c) remains constant with increasing time	increasing
	(d) None of these	time

157	Activity of Radioactive nuclei is given by:	
	(a) N / N $_{\rm o}$	(d) λ N
	(b) N _o / N	
	(c) λ / N	
	(d) <u>λ N</u>	
	The rate of decrease of decay in parent nucle	i is directly
158	proportional to the:	(d) No of
	(a) Activity. (b) Half-life	narent
	(c) Relative activity (d) No of pare	<u>nt nuclei</u> nuclei
	The time in which half of parent nuclear dec	ay is called:
	(a) Life time	
	(b) Time of decay.	(d) <u>Half</u>
	(c) Decay interval	life
	(d) <u>Half life</u>	
159	Half-life of radioactive elements is given by	
	(a) <u>0.693 / λ</u>	
	(b) 0.693	(a) <u>0.693 / λ</u>
	c) 0.693λ	
	(d) $\lambda / 0$.	
160	The half – life of radium is 1600 years. After	6400 years, the
	sample of the surviving radium would be its	
	a) 1 / 4	c) <u>1/16</u>
	b) 1 / 8	
	c) <u>1/16</u>	
	d) 1 / 2	
161	The energy equivalent to the mass reduced in	n the formation of a
	nucleus is called:	
	(a) Nuclear energy	(b) <u>Binding</u> energy
	(b) <u>Binding energy</u>	

	(c) Eusion energy	
	(d) Detential analy	
	(a) Potential energy	
162	One atomic mass unit is equal to:	
	a) $1.6 \ge 10^{-19} \text{ J}$	c) $\frac{931 \times 10^{\circ}}{2^{\circ}}$
	b) 9.1 x 10 ⁻²⁷ kg	
	c) <u>931 x 10⁶ eV</u>	
	d) 9 x 10^9 eV	
163		
	The process of the splitting of a heavy nucleus into smaller	
	fragments is called	
	iragments is called:	
	(a) Fusion	(b) <u>Fission</u>
	(b) <u>Fission</u>	
	(c) Pair production	
	(d) Annihilation of matter	
164		
	In nuclear fission, $_{92}$ U 235 is bombarded by:	
	(a) Low energy neutron	
	(b) <u>Slow Neutron.</u>	(b) <u>Slow</u> Noutron
	(c) High energy neutron	
	(d) Fast neutron.	
165	A material consisting of the fissionable isotopes of Uranium is	
	called the	
	(a) Protocological	(b)
		Nuclear
	$(0) \underline{\mathbf{nuclear ruei}}.$	fuel.
	(c) Atom bomb fuel	
166	(d) Atomic fuel.	
100		
	Critical mass of fissionable isotope of Uranium is:	
	(a) 7.2%	
	(b) <u>0.72%</u>	(b) <u>0.72%</u>

	(c) 0 072%	
	(d) 72 %	
167	(d) 72 %	
	Breeder Reactor is used to convert: (a) ${}_{92}U^{235}$ into ${}_{56}Ba^{144}$ and ${}_{36}Kr^{89}$ (b) ${}_{92}U^{238}$ into ${}_{56}Ba^{144}$ and ${}_{36}Kr^{89}$ (c) ${}_{92}U^{238}$ into ${}_{94}Pu^{239}$ (d) ${}_{92}U^{235}$ into ${}_{94}U^{238}$	(c) $\underline{{}_{92}U^{238}}_{94}Pu^{239}$
168	The process of converting non-fissionable uranium into fissionable is called. (a) Disintegration. (b) <u>Breeding</u>	(b) <u>Breeding</u>
169	 (c) None of these (d) Decay process LMFBR is the abbreviation of: (a) Liquid metal fast breeder reactor (b) Lithium metal fission breeder reaction (c) Lithium metal of fission and bomb radiation. (d) None of these 	(a) <u>Liquid</u> <u>metal fast</u> <u>breeder</u> <u>reactor</u>